Category: наука

РОСНАНО и «КуйбышевАзот» запустили энергоэффективное производство капролактама

Компания «КуйбышевАзот» завершила проект по модернизации крупнотоннажного производства капролактама (используется для получения нейлона и продукции на его основе — технического волокна и тканей) на основе передовых технологий с использованием наноструктурированных катализаторов. Общий объем инвестиций в проект, реализуемый совместно с РОСНАНО, составил 9,8 млрд рублей, включая софинансирование РОСНАНО в размере 1,25 млрд рублей.



В торжественном открытии производства приняли участие губернатор Самарской области Николай Меркушкин, генеральный директор АО «КуйбышевАзот» Александр Герасименко и председатель Правления УК «РОСНАНО» Анатолий Чубайс.

Collapse )

Безмасочная многолучевая электронная литография от Mapper Lithography

Кто-то вероятно уже слышал о том, что Роснано в конце 2012-го года инвестировала в компанию-разработчика оборудования электронной литографии Mapper Lithography. Что и как они делают, спасет ли это отечественную микроэлектронную промышленность — узнаем в этой статье.

Как мы помним, производство микросхем подразумевает последовательную обработку полупроводниковой пластины через экспонированный слой фоторезиста, изображение на котором обычно формируется оптическим способом: «сканер» через уменьшающий объектив проецирует изображение фотошаблона.

Этот подход имеет ряд недостатков: необходимость изготовления фотошаблонов для каждой новой микросхемы (опустим тут возможность группового производства) — приводит к тому, что продукты обязаны быть крупносерийными, миллионы штук, чтобы окупать стоимость фотошаблонов (до нескольких миллионов $ на каждый тип микросхемы). И с другой стороны — длина волны света ограничивает минимальные размер рисуемых элементов. Сейчас мировая промышленность уже вплотную подошла к теоретическому пределу разрешения оптической литографии: ~35nm для сканеров NA=1.35 с ArF лазерами на длине волны 193нм и ~18нм для литографии на жестком ультрафиолете EUV (однако в серийном производстве это пока не используется).

Есть и альтернатива: экспонировать фоторезист не светом, а электронным пучком — получается электронная литография. Электронный пучок можно фокусировать в точку гораздо меньшего размера, даже 1нм не проблема, но появляются и новые проблемы.

На фотографии — симуляция попадания электрона в электронрезист, демонстрирующая проблему с разрешением электронрезиста из-за рассеяния электронов.

Ограничения электронной литографии

Экспозиция
Для того, чтобы «засветить» электронрезист — на единицу площади должно попасть определенное количество электронов. Для типичных хороших электрон-резистов — экспозиция получается порядка 30 микрокулон на квадратный сантиметр. Это значит, что один луч с током 10nA (10 нанокулон в секунду) засветит 300мм пластину площадью 706 см2 за 706*30/(10*0.001) = 24 дня. И это при том, что таких экспозиций на пластину нужно несколько. Это и был один из существенных факторов, ограничивающих распространение электронной литографии (такая однолучевая система не сложнее сканирующего электронного микроскопа — а они продавались уже в 1965 году).

Может быть можно увеличить ток в луче?

Электронрезист
Одна из оставшихся проблем — электроны не просто экспонируют электрон резист при попадании, а постепенно теряют энергию, двигаясь в его толще случайно меняя направление. Бороться с этим эффектом отчасти можно снижая энергию электронов (=скорость) — но это заставляет снижать и ток, чтобы электроны не начали «расталкивать» друг друга в полете. Mapper использует энергию 5 kV, соответственно объем, в котором рассеиваются электроны намного меньше изображенного на первой фотографии в статье.

Принцип работы многолучевой системы

Дла сравнения, система Mapper — слева, справа — классический однолучевой электронный микроскоп.
В классической системе — луч от электронной пушки (сверху) фокусируется электростатическими линзами и отклоняется в нужное место отклоняющими катушками или электростатическими дефлекторами. Напрямую масштабировать такую систему было бы затратно — пришлось бы все элементы конструкции дублировать.

У Mapper — один мощный источник электронов, коллиматор (электростатическая линза, фокусирующих их так, чтобы получался широкий параллельный пучок электронов). Затем этот широкий пучок попадает на матрицу бланкеров (на фото справа) — фактически пластина с дырками, у одной из стенок которых — отклоняющий электрод. Когда на электрод подают напряжение — электроны отклоняются и не попадают дальше никуда. Если тока нет — так параллельным пучком и летят дальше. В прототипе системы количество лучей было 7x7, сейчас делают «боевую» систему с 13тыс лучей (фактически просто больше «дырок» и соединений к ним и все).

Изначально (~2008 год) Mapper хотел управлять этими отклоняющими электродами с помощью лазера, видимо чтобы проводники не вносили искажений в «не свои» каналы.

Поскольку даже 13000 лучей не достаточно, чтобы покрыть полосу шириной 26мм с одного прохода — ниже идут индивидуальные дефлекторы, которые могут отклонять каждый луч примерно на 2 микрометра вдоль одной оси (перпендикулярно движению пластины). И наконец — для каждого луча своя электростатическая линза для фокусировки.

В результате такую систему намного проще масштабировать — все эти микропластинки с «дырками» изготавливаются по уже отработанным MEMS техпроцессам на серийных заводах, и при необходимости их можно масштабировать и дальше. Электронная оптика максимально упрощена (=удешевлена) — за счет того, что отклонять каждый луч нужно на совсем небольшое расстояние (2 микрона), да еще и вдоль одной оси. Судя по презентациям, в дальнейших планах — интеграция CMOS управляющей логики в MEMS устройства, что должно еще расширить возможности масштабирования системы.

Экспонирование всей пластины обеспечивается уже синхронным плавным движением самой пластины относительно установки. Этот метод уже давно применяется в серийных оптических сканерах — так что тут все проблемы уже решены.


Результаты и резюме

Прототип у Mapper работает, хотят добиться разрешения 16нм (с произвольной геометрией, оптическая литография на 193нм лазере в таких условиях выдает минимум 35-40нм). На начало 2014 года планировались первые запуски новой системы с 13тыс лучей. В серийное производство должно пойти в 2015-2016. Однако есть и ложка дегтя: сразу после получения денег от Роснано в конце 2012 года на сайте компании больше не было ни одной новости. Я им 2 раза писал на эту тему — молчат как рыба об лед.

При инвестировании Роснано обязало компанию перенести часть производства в РФ, и переносить планировали как раз микрооптику. Сделано это или нет на данный момент — не известно, на сайте Роснано написано, что что-то происходит в технополисе «Москва».

По стоимости конечного аппарата — производитель ориентируются на стоимость, сравнимую с EUV сканерами из расчета на 1 пластину в час (~500тыс$/wph). Т.к. максимальная производительность у Mapper на одной установке получается 10 пластин в час, для получения тех же ~100 пластин в час — систему предлагается ставить в нескольких экземплярах.

Когда система пойдет в серийное производство — можно ожидать дальнейшего снижения стоимости, т.к. тут нет самых больных мест оптической фотолитографии — источника света (и EUV и ArF лазеры стоят больших денег), сложного и чудовищно дорогого объектива и фотошаблонов, которые нужно изготавливать для каждого нового типа изготовляемых микросхем. А электронная микрооптика — изготовляется серийно хоть в миллионе экземпляров без проблем.

Появление таких систем — обещает также снизить стоимость мелкосерийных микросхем, появится альтернатива FPGA с намного бОльшей производительностью.

Особенно такие системы нравятся военным и идеально вписываются в текущую российскую концепцию «маленького микроэлектронного производства двойного назначения». Однако, радоваться рано — Роснано лишь один из инвесторов и производитель в любом случае будет вынужден выполнять требования экспортного контроля всех стран, участвующих в разработке. А это значит, что получить такую систему в России по хорошему можно будет только для гражданских производств, а именно с ними (вернее с их отсутствием) у нас проблема — об этом я еще напишу подробнее.

Автор: Михаил Сваричевский
Источник: Habrahabr

В поиске алмазов помогут «Нейтронные технологии»

Можно ли найти алмазы в кимберлите, не разрушив их? Для детектора на основе меченых нейтронов это не проблема. Прибор компании «Нейтронные технологии» нашел 3 драгоценных камня общим весом в 2,5-3 карата в 50 кг породы.

В конце июня наша проектная компания «Нейтронные технологии» разработала методику для АК «АЛРОСА», позволяющую находить крупные алмазы в кимберлитовой породе без ее разрушения.

Collapse )

В Брянске открылось производство наносиликатов и полимерных композитов на их основе

В городе Карачев Брянской области состоялся запуск производства — первого в России производства наносиликатов и полимерных нанокомпозитов с их применением. Продукция компании применяется в качестве добавок и наполнителей в нефтегазовой, кабельной, упаковочной и автомобильной промышленности, строительной отрасли. Суммарные инвестиции в проект составили 1,9 млрд рублей, включая софинансирование РОСНАНО в размере 1,1 млрд рублей.


Торжественная церемония запуска производства наносиликатов и полимерных нанокомпозитов с их применением


В торжественной церемонии запуска приняли участие Губернатор Брянской области Николай Денин, председатель правления РОСНАНО Анатолий Чубайс, генеральный директор компании «МЕТАКЛЭЙ» Сергей Штепа.


Collapse )

Об истории открытия и использования аллотропов углерода: лекция Константина Новоселова

10 сентября в 20.00 в Парке Горького прошла публичная лекция Нобелевского лауреата Константина Новоселова, которая была организована РОСНАНО и РВК в рамках книжного фестиваля BookMarket.



В своей лекции Константин простым и доступным языком рассказал об истории открытия различных модификаций углерода: от графита и алмаза до фуллеренов, углеродных нанотрубок и графена.


Подробнее о том, как было сделано открытие, за которое 5 октября 2010 года К. Новоселову и А. Гейму была присуждена Нобелевская премия, Константин рассказал в ноябре 2010 года на форуме Rusnanotech 2010.

РОСНАНО представила словарь основных нанотехнологических терминов

Cегодня в рамках Международного форума по нанотехнологиям состоялась презентация первого издания словаря основных нанотехнологических и связанных с нанотехнологиями терминов. Книгу представили главный редактор словаря, директор департамента научно-технической экспертизы РОСНАНО Сергей Калюжный и директор научно-образовательного центра по нанотехнологиям МГУ им. М.В.Ломоносова, проректор МГУ им. М.В.Ломоносова, профессор, академик РАН Алексей Хохлов.

Алексей Хохлов и Сергей Калюжный
Словарь презентовали проректор МГУ им. М.В.Ломоносова, профессор, академик РАН Алексей Хохлов (на фото - слева) и директор департамента научно-технической экспертизы РОСНАНО Сергей Калюжный (на фото - справа)

Collapse )